c-Src Regulates Akt Signaling in Response to Ghrelin via β-Arrestin Signaling-Independent and -Dependent Mechanisms

نویسندگان

  • Maria Lodeiro
  • Marily Theodoropoulou
  • Maria Pardo
  • Felipe F. Casanueva
  • Jesus P. Camiña
چکیده

The aim of the present study was to identify the signaling mechanisms to ghrelin-stimulated activation of the serine/threonine kinase Akt. In human embryonic kidney 293 (HEK293) cells transfected with GHS-R1a, ghrelin leads to the activation of Akt through the interplay of distinct signaling mechanisms: an early G(i/o) protein-dependent pathway and a late pathway mediated by beta-arrestins. The starting point is the G(i/o)-protein dependent PI3K activation that leads to the membrane recruitment of Akt, which is phosphorylated at Y by c-Src with the subsequent phosphorylation at A-loop (T308) and HM (S473) by PDK1 and mTORC2, respectively. Once the receptor is activated, a second signaling pathway is mediated by beta-arrestins 1 and 2, involving the recruitment of at least beta-arrestins, c-Src and Akt. This beta-arrestin-scaffolded complex leads to full activation of Akt through PDK1 and mTORC2, which are not associated to the complex. In agreement with these results, assays performed in 3T3-L1 preadipocyte cells indicate that beta-arrestins and c-Src are implicated in the activation of Akt in response to ghrelin through the GHS-R1a. In summary this work reveals that c-Src is crucially involved in the ghrelin-mediated Akt activation. Furthermore, the results support the view that beta-arrestins act as both scaffolding proteins and signal transducers on Akt activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pollen Typhae total flavone improves insulin-induced glucose uptake through the β-arrestin-2-mediated signaling in C2C12 myotubes.

Defects in insulin-stimulated glucose uptake in skeletal muscle result from the dysfunction of insulin signaling including the phosphatidylinositol-3 kinase (PI3K) pathway and a novel β-arrestin-2-mediated signaling, which leads to insulin resistance (IR). Pollen Typhae, a Chinese herb, has been used for thousands of years in traditional Chinese m...

متن کامل

The SHP-1 protein tyrosine phosphatase negatively modulates Akt signaling in the ghrelin/GHSR1a system

The aim of the present study was to identify the signaling mechanism(s) responsible for the modulation of growth hormone secretagogue receptor type 1a (GHSR1a)-associated Akt activity. Ghrelin leads to the activation of Akt through the interplay of distinct signaling mechanisms: an early G(i/o) protein-dependent pathway and a late pathway mediated by β-arrestins. We found that the Src homology ...

متن کامل

Arrestin-2 differentially regulates PAR4 and ADP receptor signaling in platelets.

Arrestins can facilitate desensitization or signaling by G protein-coupled receptors (GPCR) in many cells, but their roles in platelets remain uncharacterized. Because of recent reports that arrestins can serve as scaffolds to recruit phosphatidylinositol-3 kinases (PI3K)s to GPCRs, we sought to determine whether arrestins regulate PI3K-dependent Akt signaling in platelets, with consequences fo...

متن کامل

Role of -arrestin 1 in the metastatic progression of colorectal cancer

G protein-coupled receptor ligand-dependent transactivation of growth factor receptors has been implicated in human cancer cell proliferation, migration, and cell survival. For example, prostaglandin E2 (PGE2)-induced transactivation of the EGF receptor (EGFR) in colorectal carcinoma cells is mediated by means of a c-Src-dependent mechanism and regulates cell proliferation and migration. Recent...

متن کامل

AG and UAG induce β-casein expression via activation of ERK1/2 and AKT pathways

The ghrelin peptides were found to circulate in two major forms: acylated ghrelin (AG) and unacylated ghrelin (UAG). Previous studies showed that AG regulates β-casein (CSN2) expression in mammary epithelial cells. However, little is known about the mechanisms by which AG regulates CSN2 gene and protein expression. Evidence suggests that UAG has biological activity through GHSR1a-independent me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009